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Abstract. X-ray imaging is commonly used in clinical routine. In radio-
therapy, spatial information is extracted from X-ray images to correctly
position patients before treatment. Similarly, orthopedic surgeons assess
the positioning and migration of implants after Total Hip Replacement
(THR) with X-ray images. However, the projective nature of X-ray imag-
ing hinders the reliable extraction of rigid structures in X-ray images,
such as bones or metallic components. We developed an approach based
on multibody physics that simultaneously registers multiple 3D shapes
with one or more 2D X-ray images. Considered as physical bodies, shapes
are driven by image forces, which exploit image gradient, and constraints,
which enforce spatial dependencies between shapes. Our method was
tested on post-operative radiographs of THR and thoroughly validated
with gold standard datasets. The final target registration error was in
average 0.3 ± 0.16 mm and the capture range improved more than 40%
with respect to reference registration methods.

1 Introduction

The registration of pre-interventional 3D data to X-ray images is a challenging
task due to the projective nature of the X-ray modality. Here, we address the
registration problem by deriving 3D shapes from 3D data and by registering
them to X-ray images. We express the shape registration as the evolution of
shapes in a multibody physics framework – where shapes are driven by forces
based on image information and by constraints to enforce spatial coherence.

X-ray imaging has many advantages such as availability, affordability and rel-
atively low doses. These factors have favored its integration in clinical computer-
assisted applications such as radiotherapy [1], interventional radiology [2] and
orthopedic surgery [3–6]. In these applications, a single or multiple X-ray images
are processed to extract spatial information to prepare or guide an intervention,
or to analyze post-operative results.

But X-ray images are difficult to process since their projective nature is asso-
ciated with loss of image information, overlapping of structures and perspective
deformations. Many applications rely on 3D-2D registration methods [7] to tackle
this issue.

In 3D-2D registration methods, a pre-interventional 3D dataset is registered
with intra-interventional [1, 3] or post-interventional [6] 2D X-ray images – by
optimizing the shape, position and orientation of the 3D dataset. The nature
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of the 3D dataset varies, it can be for instance a 3D shape (e.g., derived from
statistical shape models [5, 6] or CAD modeling [8]). Or a volumetric image such
as Computed Tomography (CT) [9, 4, 10] or Magnetic Resonance (MR) [11, 4,
12].

Most approaches are based on Digitally Reconstructed Radiographs (DRR) [1,
2, 9, 10, 13], which are virtual radiographs created from volumetric images, com-
monly CT volumes. DRR-based registration methods find the optimal shape
or transformation parameters that maximize a similarity metric between the
computed DRRs and the corresponding X-ray images.

DRR-based approaches provide accurate results but have low capture ranges
[7] due to their sensitivity to local optima in the objective function. Therefore,
alternative strategies were imagined to avoid using DRR by directly exploiting
gradients of the volumetric and X-ray images. Approaches are mainly classified
based on the space in which gradients are compared [7], i.e., the X-ray [14, 15]
or the 3D data [4, 3, 12] space.

The registration of 3D data to a single X-ray image often results in “out-of-
plane” errors occurring in the source to detector direction. For example, when 3D
shapes are registered to a single X-ray image the registered shapes can present
incorrect spatial adjacency – despite low image projection errors. This issue par-
ticularly affects the estimation of implant orientation [6] or joint kinematics [8].

We target the rigid 3D-2D registration of shapes derived from 3D data to
one or several X-ray images. Shape registration is equivalent to finding the best
transformation (position and orientation) that correctly projects the shape onto
the X-ray images. Most shape-based approaches depend on the extraction of the
shape silhouettes in the X-ray images – a segmentation task difficult to auto-
mate, time-consuming when performed manually and whose accuracy impacts
the registration outcome [7, 16].

Our work is original in computing the optimal transformation of shapes by
considering the shapes as bodies evolving in a multibody physics framework.
Multibody physics systems simulate the evolution of several bodies according to
modeled Newtonian laws of motion. Rigid body motion is driven by user-defined
external forces and subject to damping and inter-bodies constraints.

In [17], a similar approach was presented in which external forces were based
on the minimization of distance between projected shape contours and extracted
silhouettes from X-ray images. Our work avoids X-ray segmentation by using
forces based on the similarity between DRRs and X-ray images. Despite the
use of DRRs, our force-based method leads to large capture ranges by using an
image similarity computation based on block matching.

Our approach is particularly novel in applying constraints between shapes
to improve the simultaneous registration of multiple shapes. Constraints avoid
non-plausible shape configuration such as inter-penetrations and provide robust-
ness against out-of-plane errors. We demonstrate the good performances of our
approach with publicly available gold standard datasets and preliminary data in
the context of Total Hip Replacement (THR).
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2 3D-2D Registration

Our approach targets the rigid 3D-2D registration of pre-interventional 3D data
to one or several X-ray images. The 3D data can be composed of 3D models (e.g.,
CAD models of implants) or volumetric medical images – hereafter referred to
as volumes to differentiate them from X-ray images. We derive 3D shapes from
the pre-interventional 3D data, the registration problem is thus equivalent to
registering the 3D shapes to the X-ray images.

2.1 Geometry and Shape Preparation

The geometry involved in our approach is depicted in Fig. 1. N X-ray images Ik

(k ∈ [1, N ]) are expressed in their local coordinate system (CS) R(Ik) and are
positioned with respect to a common world CS R(W ) based on rigid transfor-

mations T
R(Ik)
R(W ) . We assume that the X-ray imaging system is calibrated – i.e.,

transformations and projective characteristics of X-ray images Ik (position of
X-ray source Ok, pixel size) are known.

M shapes Sj (j ∈ [1,M ]) are represented as triangular meshes and are
expressed in their local CSR(Sj). Each shape Sj is registered to the X-ray images

Ik by optimizing the rigid transforms T
R(W )
R(Sj) = T j so that each shape is correctly

projected onto the corresponding X-ray images. Shapes Sj are derived from
the 3D pre-interventional data: CAD models are straightforwardly converted
to triangular meshes, while volumes V j are segmented to produce shapes after
reconstruction.

Fig. 1. Illustration of the 3D-2D registration with X-ray images from [3]. Shapes
Sj and Sj+1 share a same CS R(Sj) as they were reconstructed from the same
CT volume V j(= V j+1). The registration jointly optimizes the rigid transfor-
mations T j and T j+1 so that shapes positioned in the world CS are correctly
projected on images Ik and Ik+1.
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2.2 Method Overview

Our 3D-2D registration starts with a Force-Based (FB) registration (Sect. 3),
which repeats for each shape 3 major steps until convergence (Fig. 2): (i) point
computation (Sect. 3.1), (ii) force calculation (Sect. 3.2) and (iii) shape position
update (Sect. 3.3). After the FB registration, a registration based on gradient
correlation, denoted as GCB, is applied to refine the results (Sect. 4). The overall
process “FB followed by GCB” will be referred to as the Enhanced Force-Based
method (EFB).
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Fig. 2. Overview of our 3D-2D registration method: Enhanced Force-Based; In-
puts: initial transformations for each shape (T j

init), the shapes (Sj), the X-ray
images (Ik) and the volumes (V j); Intermediate output: FB result transforma-
tion T j

FB ; Output: final transformation T j
final

3 Force-Based Registration

3.1 Point Computation

Based on the current transformation T j of the shape Sj and an X-ray image Ik

with corresponding projective properties, the associated volume V j is used to
generate a DRR Djk. Since we use a ray-casting approach [9] to generate the
DRR, we restrict our method to X-ray based modalities (e.g., 3D Rotational
X-ray Imaging or CT). For shapes not derived from medical volumes, we create
artificial volumes by rasterizing the shapes into binary images and we apply the
same DRR generation approach (Fig. 3a).
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a) c)b)

Fig. 3. DRR example and point selection. a) DRR generated from an artificial
volume of an implant model. b) A silhouette criterion selects a subset of shape
vertices (dark spheres) so that projected points (bright spheres) on the DRR
image lie on strong edges. c) The number of projected points is reduced by
keeping a single point within image blocks.

Vertices of the shape Sj are then filtered with a silhouette criterion such as
in [5]. This criterion keeps vertices belonging to edges with front and back facing
triangles with respect to a viewpoint located at the X-ray source position Ok

(Fig. 3b). We chose the silhouette procedure to select points of interest that will
exhibit a significant local gradient variation in the projected image.

The selected subset of vertices is then projected onto the image (Fig. 3b).
We divide the image into a grid with blocks of G×G pixels and reduce all points
falling into a block to a single point by choosing the closest point to the block
point barycenter (Fig. 3c). This reduction process results in projected points pjki
corresponding to source shape vertices yjki (i ∈ [1, Ljk]).

For each projected point pjki defined in DRR image Djk we look for a po-
sition in the corresponding X-Ray image Ik which maximizes a local similarity
criterion. A block djki of B×B pixels is defined around each projected point pjki
in Djk (Fig. 4b). Similarly, we specify a search window wjk

i of W ×W pixels for
each projected point in Ik (Fig. 4a).

A block matching procedure is subsequently applied by finding the block
b∗jki within the search window that matches at best each block djki (Fig. 4a).

Target projected points qjki are chosen as the center positions of the resulting

blocks b∗jki . The block matching technique increases the capture range of regis-
trations method [18] and speeds up the DRR computation since we can restrict
its computation within the blocks only.

We chose the Gradient Correlation (GC) [9] for the similarity metric due to its
good performance in DRR-based 3D-2D registration [10, 13]. GC(b, d) maximizes
the alignment of gradient vectors in blocks b and d normalized by the mean
gradient vector of the corresponding block. A gradient-based metric is adequate
to capture the gradient variations near the projected silhouette points.
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a) b) c)

Fig. 4. Force-based registration. a) A silhouette shape point y (•) is projected
on p (4) in the X-ray image I and b) on the DRR D. In I, a block b∗ is found
within a search window w such that it matches at best the block d in D. c)
Based on the ray (O, q), where O is the position of the X-ray source and q (?)
is the center of b∗, a new shape point z (?) is computed to produce the image
force f .

3.2 Force Calculation

The optimization of the transformations T j is indirectly performed by controlling
the motion of the shapes Sj that evolve in a system built upon Newtonian laws
of motion. Each shape Sj is modeled as a rigid body with mass mj driven by
Newtonian dynamics and subjected to external forces and constraints, as well
as damping γ.

We devise external forces to alter the position of shapes in the world CS so
that transformations T j are optimized. Image forces enforce at the point level
the similarity between local areas of the DRRs and the X-Ray images. Given a
source point yjki of a shape Sj selected at the point selection stage, we compute

a force f jki at yjki that follows the Hooke’s law of a spring with stiffness lj :

f jki = lj ∗ (zjki − y
jk
i ) (1)

where a target point zjki is computed as the projection of yjki on the ray pass-

ing through the X-ray source Ok and the target projected point qjki resulting
from the block matching (Fig. 4c). This force “attracts” the shape to a position
where the image similarity is maximized – i.e., a location satisfying the 3D-2D
registration problem. Given a shape Sj , forces calculated for each image Ik are
back-transformed in the world CS and summed at vertex level – providing a
natural way to consider multiple X-ray images:

f ji =

N∑
k=1

(T
R(Ik)
R(w) )−1f jki (2)
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3.3 Shape Position Update

A simulation step of the physics system updates the position of the rigid bodies
based on their current state (velocity, position), the external forces and the
damping γ (which produces a resisting force with an amplitude proportional
to body velocity). This is performed by a numerical integration scheme which
solves a set of algebraic and differential equations. The resulting position of a
shape Sj is eventually used to update the transformation T j .

A simulation step also considers constraints that model dependencies between
shapes. Examples of constraints are collision response to avoid colliding bodies
and the modeling of joints with various degrees of freedom. For instance, a pivot
constraint can be defined between two bodies to have them rotate around a
relative rotation center.

The simulation runs until shape motion reaches an equilibrium – a state
which balances respect of constraints and image similarity maximization. In
practice, a perfect equilibrium is not always observed since joint constraints can
be over restrictive yielding a small “oscillation” of the shape position around
the equilibrium. This issue is addressed by “softening” the constraints to allow
small violations, like an inter-penetration threshold between bodies or a small
distance between pivot centers.

The equilibrium is also affected by the accuracy of the block matching. A sub-
pixel accuracy cannot be reached with block matching since the computation of
block positions is restricted to integer pixel locations. Consequently, image forces
at some vertices can contribute to the position instability around the equilibrium.

The variation of shapes could be analyzed between two successive steps to
stop the simulation when the Euclidean distance between the shape vertices is
below a threshold. However, choosing an adequate threshold value is not an easy
task since e.g. a too big value can lead to premature termination. An alternative
approach is to run the simulation for a fixed number of steps n – such value
being selected based on experiments.

4 Enhanced Force-based Registration by Gradient
Correlation Refinement

After completion of the force-based registration FB, the GCB refinement is per-
formed to improve the accuracy of our block-based approach. This refined reg-
istration does not rely anymore on the physics system but instead it optimizes
the transformation T j of a shape Sj by maximizing the sum of the GC similar-
ities between the DRRs Djk and X-ray images Ik [10]. Similarly to the block

matching process, we only compute the sum of similarities Φj inside blocks djki :

Φj =

N∑
k=1

Ljk∑
i=1

GC(bjki , d
jk
i ) (3)
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where blocks bjki and djki are computed for the X-ray image Ik and the DRR

Djk, and are centered on the filtered projected points pjki with the same selection
procedure of the FB method (Sect. 3.1).

As suggested by [10], we used a Powell-Brent optimizer for which we auto-
matically compute the parameter scales. For an average translation step of t
mm, we choose an angular step α such as tan(α) = t/r, where r is the radius of
the enclosing sphere of the shape. Isotropic translation and rotation scales are
finally set to 1/t and 1/α. The rotation center of the rigid transformation T j is
set to the gravity center of the shape Sj .

The rationale behind using the GCB is that after FB we are close to the final
solution so that constraints are not necessary at this stage. A way to consider
constraints in Eq. 3 would depend on the type of constraints. For instance, we
could add a penalty term to minimize the distance between pivot centers for
pivot constraints.

5 Experiments

We tested our FB and EFB methods with two experiments. The first experi-
ment uses gold standard 3D-2D registration datasets and exemplifies the use of
multiple X-ray images. In the second experiment, we registered multiple shapes
to a single post-THR X-ray image.

Multibody physics were implemented with Bullet Physics library1, while
block-matching and image similarity optimization were implemented with ITK2.
We used a computer with i7 core and 6GB RAM running Windows 7. Table 1
reports the values of the different parameters.

Table 1. Experiment parameters for the FB first and second passes, and for the
GCB refinement.

Parameters FB first pass FB second pass GCB

block size B (Sect. 3.1, 4) 15 px 11 px 9 px
window size W (Sect. 3.1) 20 px 10 px -

reduction block size G (Sect. 3.1) 10 px 10 px 10 px
mass mj (Sect. 3.2) 1 kg 1 kg -

stiffness lj (Sect. 3.2) 0.2 N.m−1 0.2 N.m−1 -
damping γ (Sect. 3.3) 0.99 N.s.m−1 0.99 N.s.m−1 -
# steps n (Sect. 3.3) 40 40 -

translation step t (Sect. 4) - - 1 mm

We applied a multi-resolution strategy with two consecutive passes in the FB
method. In the first pass, the sizes of the search window W and block B were

1 http://www.bulletphysics.org
2 http://www.itk.org
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chosen to ensure large capture ranges and improve robustness against image
artifacts. In the second pass, the sizes were reduced to improve accuracy and
speed.

Same physical parameters were set for all shapes. We experimentally defined
a number of 40 simulation steps per pass – the value being an upper limit as
sometimes we observed earlier convergence to a stable equilibrium. The values
of the image parameters B, G and W were chosen for an average pixel size of
0.5 mm and for standard clinical usage of X-ray imaging (e.g., average source to
detector distance of 1200 mm).

5.1 Validation on Gold Standard Datasets

We used two gold standard datasets Dataset A [3] and Dataset B [4], which
contain CT images with 8 and 5 human vertebrae. Datasets include calibrated
X-ray images registered to a world CS. For each vertebra, a gold standard trans-
formation from the CT CS to the world CS is provided.

Corresponding works [3, 4] describe tests for objective evaluation, which in-
clude pairs of quasi-perpendicular X-ray images, starting positions and reference
points to compute mean Target Registration Error (mTRE) [3]. We used the
same testing conditions and data except for the size of X-ray images in Dataset
B which was divided by 2 to speed-up DRR generation and satisfy block param-
eters reported in Table 1. Additionally, we coarsely reconstructed the shapes of
vertebrae from CT volumes.

We ran a total of 3850 (1600 on Dataset A and 2250 on Dataset B) tests
to validate our methods – with a test taking about 5 minutes to complete. A
single vertebra was optimized during a test, hence constraints were not necessary.
Our FB and EFB methods were compared against the following approaches:
Intensity-Based (IB) [9], Gradient-Based (GB) [4], Reconstruction-Based (RB)
[11] and Robust Gradient Reconstruction-Based extension (RGRBe) [12].

The accuracy of registration was assessed with the mTRE. Success criteria
was set to mTRE ≤ 2mm and Capture Range (CR) was defined as the distance
from the reference position for which 95% of the registrations were successful [12].
Success Rate (SR) was defined as the percentage of successful tests.

Table 2 reports the results of compared methods for both datasets. For
Dataset A figures were copied from [12]. For Dataset B data was only avail-
able for the GB method, from which we computed the metrics.

The performances of the FB method were satisfactory. The CR was almost as
good as the reference method RGRBe on Dataset A (10.3 vs. 11 mm) and larger
than GB on Dataset B. However, FB was less accurate than RGRBe on Dataset
A (0.65 vs. 0.32) and GB on Dataset B (0.77 vs. 0.32). SR was in average greater
than 70%.

The use of GCB improved the results of the FB method for both datasets
(e.g., Fig. 5 for Dataset A) – with improvements in CR and SR values and a
significant difference in accuracy (p-value<1e-16, Wilcoxon matched pairs test).
We tested a direct application of the GCB on Dataset A which produced poor
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Table 2. Comparison of our 3D-2D registration methods Force-Based (FB) and
Enhanced Force-Based (EFB) with existing methods: Intensity-Based (IB) [9],
Gradient-Based (GB) [4], Reconstruction-Based (RB) [11] and Robust Gradi-
ent Reconstruction-Based extension (RGRBe) [12]; A = Accuracy (mm), CR =
Capture Range (mm) and SR = Success Rate (%)

Dataset A Dataset B

IB GB RB RGRBe FB EFB GB FB EFB

A 0.65 0.38 0.43 0.32 0.65 0.22 0.32 0.77 0.39
CR 3.00 6.00 5.00 11.00 10.30 15.70 4.20 6.40 7.40
SR - 56.00 65.00 92.00 73.20 80.00 51.40 71.90 74.10

results (accuracy of 0.6 mm, SR of 21.6%). This upholds the use of our EFB
method which combines the force-based method with the GCB method.

With our EFB method, we measured a CR 42% higher than the reference
method on Dataset A with an improvement in accuracy (0.22 vs. 0.32 mm).
Though our SR (80%) was below RGRBe (92%), the greater CR of the EFB
method (15.7 mm) compared to RGRBe (11 mm) highlighted the better consis-
tency of our method.

The EFB approach also yielded better results on Dataset B. CR and SR were
improved by 76% and 44%. Accuracy significantly decreased (p-value<0.0001)
to a low value of 0.39 mm but it remained greater than the accuracy of GC
method (p-value<0.0001).

Fig. 5. Registration results on Dataset A for FB and EFB methods.

5.2 Experiment on Total Hip Replacement Data

We tested our EFB method on THR post-operative data by registering shapes
of hip implants and hip bone to a single anteroposterior (AP) X-ray image.
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This experiment investigates the use of our 3D-2D registration to compute the
anteversion (RA) and inclination (RI) angles. These angles quantify the cup ori-
entation with respect to the hip bone and are essential for evaluation of outcome
after THR [6].

After ethical approval, we acquired post-operative CT images and AP ra-
diographs from 3 patients who underwent THR. The manufacturer provided
the shapes of implants which we carefully registered to the CT volumes, while
the hip bone was manually segmented in the CT dataset. Based on the recon-
structed hip, we computed the RA and RI angles according to the radiographic
convention [19].

A hip implant is composed of two parts which are mechanically linked by
a pivot joint. The femoral implant is made of the stem and head while the
acetabular implant includes the cup and the liner. For each part, we created a
shape derived from the implant CAD models of the manufacturer.

We conducted an experiment to register the implants and hip bone to the AP
radiograph – by keeping the same parameters as in previous experiment (Table
1). To remove the bias of using the post-operative CT volume with implants, we
built for each implant shape an artificial binary volume with isotropic spacing of
0.5 mm (Sect. 3.1). Similarly, shapes were not initialized from the configuration
of the post-operative CT, but were instead initialized based on manually placed
landmarks.

We modeled pivot constraints between the femoral and acetabular shapes by
using the rotation center provided by the manufacturer and defined in the CS
of each shape. An additional pivot constraint was defined between the hip bone
and the acetabular implant. The pivot center of the hip bone was estimated as
the center of the sphere, with same radius as the cup, which fitted at best the
acetabulum area of the bone.

To account for inaccuracies in estimating the pivot centers, we relaxed con-
straints by allowing slight deviations from constrained states. We used the Error
Reduction Parameter (ERP) of Bullet library – where an ERP value<1 softens
the joint, while a value of 1 yields a perfect joint. We chose an ERP value of 0.8.

Pixel size and source-to-detector distance of X-ray images were known. But
compared to the previous experiment a gold-standard transformation from CT
to X-ray CS was not available. Thus, we assessed the relative positioning of the
cup with respect to the hip bone.

We measured a Surface Distance error [20] (SD in mm) between acetabular
implants in CT and X-ray images. We also computed Absolute Differences (AD
in ◦) between expected (CT) and computed (X-ray) RA and RI angles. Results
for FB and EFB methods are reported in Table 3.

When using constraints we observed a good projection of shapes after reg-
istration (e.g., Fig. 6c) and measured an average SD of 0.61 ± 0.59 mm – de-
spite an approximate initialization (e.g., Fig. 6a). The AD was low for the RA
(0.57 ± 0.50◦) but was high for the RI – due to a large AD of 5◦ computed for
one patient. By removing this patient’s data, the AD improved about 50% for
both angles.
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Table 3. Results of our Enhanced Force-Based method (EFB) on THR data with
and without the use of constraints; Measures are the Absolute Differences (AD)
for the anteversion (RA) and inclination (RI) angles, and the Surface Distance
error (SD).

AD RA AD RI SD

EFB with pivot constraints 0.57 ± 0.50◦ 2.37 ± 2.29◦ 0.61 ± 0.59 mm
EFB without pivot constraints 3.95 ± 4.96◦ 9.09 ± 8.04◦ 2.03 ± 2.05 mm

c)b)a)

Fig. 6. Example of projected points onto X-ray images for one patient. a) The
initialization is approximate but the points appear well projected in the final
results b) without and c) with the use of pivot constraints.

When constraints were not used, we measured a large increase of the distance
and angle errors (e.g., 0.57 to 3.95 for the AD of RA). We observed out-of-plane
errors illustrated in Fig. 7b in which the cup left the acetabular socket in the
detector-to-source direction – despite a good projection of points on the X-ray
image (Fig. 6b).

Despite a low number of subjects in this experiment, results were very promis-
ing. They highlighted the EFB strong potential to accurately segment multiple
shapes from a single X-ray image.

6 Discussion and Conclusion

Based on Markelj et al.’s classification [7], we devised a novel hybrid approach
mixing projection (block-matching coupled with DRR) and back-projection (force
driven optimization) techniques. Our approach relies on a multibody physics
system that provides a natural and efficient way to tackle the simultaneous reg-
istration of several shapes with multiple X-ray images.

Compared to other existing methods, our approach generally returned more
accurate results with a larger capture range in gold standard benchmarks using
two radiographs. In particular, the block-based matching improved the capture
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c)b)a)

Fig. 7. Illustration of the performances in using constraints for one patient. The
positioning of the acetabular implant looks quite similar between the a) expected
and c) the result with constraints. b) Without constraints, the acetabular im-
plant is clearly in the wrong location.

range compared to direct DRR-based approaches. Physical constraints brought
robustness to the registration of multiple shapes to a single X-ray image, but
additional testing is necessary to assess its viability in clinical use (e.g., cup
orientation computation [6] or joint tracking by fluoroscopy [8]).

A limitation of our approach is the need of shapes of the patient, which
may require some 3D segmentation. However, we observed that our approach
was not very sensitive to the segmentation quality, which is not the case for
techniques based on 2D X-ray segmentations [16]. Nevertheless, current work
focuses on creating forces based on statistical shape models, like [21], to remove
this dependency of patient-specific shapes as in [5, 6].

Similarly, we plan to avoid the use of invasive CT scans by adding new image
forces which do not require DRR and support MR images. It could be based on
the back projected gradients [12]. By adding new forces, we can easily extend
our framework while preserving its advantages such as constraints.
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